22 research outputs found

    Towards Comprehensive Foundations of Computational Intelligence

    Full text link
    Abstract. Although computational intelligence (CI) covers a vast variety of different methods it still lacks an integrative theory. Several proposals for CI foundations are discussed: computing and cognition as compression, meta-learning as search in the space of data models, (dis)similarity based methods providing a framework for such meta-learning, and a more general approach based on chains of transformations. Many useful transformations that extract information from features are discussed. Heterogeneous adaptive systems are presented as particular example of transformation-based systems, and the goal of learning is redefined to facilitate creation of simpler data models. The need to understand data structures leads to techniques for logical and prototype-based rule extraction, and to generation of multiple alternative models, while the need to increase predictive power of adaptive models leads to committees of competent models. Learning from partial observations is a natural extension towards reasoning based on perceptions, and an approach to intuitive solving of such problems is presented. Throughout the paper neurocognitive inspirations are frequently used and are especially important in modeling of the higher cognitive functions. Promising directions such as liquid and laminar computing are identified and many open problems presented.

    A Method for the Numerical Computation of Best L 1-Approximations of Continuous Functions

    No full text

    Numerical analysis of the spin-dependent dark current in microcrystalline silicon solar cells

    Get PDF
    Brammer T, Stiebig H, Lips K. Numerical analysis of the spin-dependent dark current in microcrystalline silicon solar cells. Applied Physics Letters. 2004;85(9):1625-1626.We present a detailed analysis of the voltage dependence of dangling bond recombination in microcrystalline silicon p-i-n diodes observed in the forward dark current at room temperature by electrically detected magnetic resonance (EDMR). The EDMR response is numerically simulated with physically reasonable parameters that are well suited to fully describe the electronic behavior of the diodes. A sign reversal as observed for amorphous silicon diodes is predicted at high voltages. The basic mechanism causing the sign reversal is shown to be due to space charge. The high sensitivity of the EDMR response to various material parameters is demonstrated. (C) 2004 American Institute of Physics
    corecore